ENERGOATOM TODAY

Over 20 years of its existence, SE NNEGC Energoatom has improved production performance and generated 1.7 trillion kWh of electricity. The Company has become a source of environmentally friendly low-carbon power for every second consumer in the country and raised the largest loan in the history of Ukraine from European institutions in the energy sector. SE NNEGC Energoatom also started the implementation of a pilot project, Ukraine – EU Energy Bridge.

Ever since its inception, SE NNEGC Energoatom has:

• completed and put into operation two new power units with VVER-1000 reactors and two hydroelectric units of the hydroelectric pumped storage power plant;
• created a national staff training system for nuclear power plants and the network of staff training centres; put into operation full-scale training simulators at all existing nuclear power plants;
• settled the radioactive waste treatment issues at NPPs, put into operation a storage facility for spent nuclear fuel (SF) at Zaporizhzhya NPP, as well as started preparing for the construction of the Central Spent Fuel Storage Facility (CSFSF) for three other nuclear power plants;
• established a unified system of R&D support for NPPs and an in-house industrial base for the provision of nuclear power plants with materials, equipment and services.

We have joined efforts with government agencies to create a national emergency alert and response system, implemented ARSMS in the supervised areas of NPPs, and started the upgrade of the physical protection at nuclear facilities, using innovative technologies.

However, all these achievements have become possible thanks to the Company’s great asset, our employees who are real professionals committed to the cause. Their work is the key to safe and reliable electricity production and the implementation of ambitious plans for SE NNEGC Energoatom’s development.

We still have much to do. We will keep on working to improve safety of nuclear power plants, complete the construction of power units No. 3 and 4 at Khmelnitska NPP, extend the life cycle of power units, build the Central Spent Fuel Storage Facility, and implement many other investment projects to generate the most environmentally friendly electricity for the nation, boost Ukraine’s export potential and strengthen the country’s energy independence.

We are looking into the future with confidence thanks to the expertise we have gained during these 20 years in implementing the most complicated large-scale projects and the unity of nuclear engineers in addressing every challenge.

Olexandr Shavlakov,
First Vice President - Technical Director,
SE NNEGC Energoatom

Appendices
Energoatom is one of the world’s leading nuclear companies due to its high level of technological advancement and safety of nuclear power plants operation, as well as due to high qualification of NPP staff.

Being one of the leaders of the Ukrainian economy, Energoatom contributes to the social and economic development of Ukraine. Over these 20 years, the Company has proved it with actions, not just words.

- **1.7 trillion kWh** of electricity generated by Energoatom nuclear power plants over 20 years of operation
- **80-90 billion kWh** is the annual contribution of the Company to electricity generation in Ukraine
- **€600 million** — Energoatom has raised the largest loan in the history of Ukraine from European institutions (European Bank for Reconstruction and Development and the European Atomic Energy Community) to implement the project Complex (Consolidated) Safety Upgrade Programme of Power Units of Ukrainian NPPs (CCSUP)
- **90 years**
- **SAFE. RELIABLE. PROMISING**

Energoatom ranks 7th worldwide in installed nuclear capacity, has 15 power units with a total capacity of 13,835 MW, and 8 research-and-production and service subdivisions that develop and produce equipment for NPPs in Ukraine, carry out repairs and refurbishment, and provide R&D support.

Over these 20 years, Energoatom has paid a total of UAH 51.036 billion in taxes.

The Company covers 55% of Ukraine’s electricity needs (both households and industrial consumers).

Energoatom has established cooperation with international organizations: World Association of Nuclear Operators (WANO), International Atomic Energy Agency (IAEA), European Bank for Reconstruction and Development (EBRD), European Commission, European Atomic Energy Community (Euratom), International Group EUR, and many others.

Energoatom has started building the Central Spent Fuel Storage Facility, using technologies of US-based Holtec International.

Energoatom has opened a representative office in Brussels to attract new partners and pursue the European vector of the Company’s development.

Energoatom has opened a representative office in Brussels to attract new partners and pursue the European vector of the Company’s development.

The Company has developed the Ukraine-EU Energy Bridge project, which will provide the opportunity to supply electricity from Khmelnytska NPP to Poland and other EU countries and will strengthen the energy independence of Ukraine.

Energoatom has started building the Central Spent Fuel Storage Facility, using technologies of US-based Holtec International.

Energoatom has developed the Ukraine-EU Energy Bridge project, which will provide the opportunity to supply electricity from Khmelnytska NPP to Poland and other EU countries and will strengthen the energy independence of Ukraine.

Energoatom ranks 1st in the transparency ranking by Transparency International Ukraine among the largest Ukrainian companies.

The Company has established cooperation with the US-Japan company Westinghouse, diversifying nuclear fuel supplies to Ukraine.
ABOUT THE COMPANY

State Enterprise “National Nuclear Energy Generating Company “Energoatom” is the operator of all running nuclear power plants in Ukraine, as well as Oleksandrivska Hydro Power Plant and Tashlyk Hydroelectric Pumped Storage Power Plant.

Energoatom is in the list of companies of strategic importance for the economy and security of Ukraine.11

Energoatom is a leader in the national energy market.

Energoatom is a reliable electricity provider for millions of Ukrainian citizens.

Energoatom covers approximately 55% of the electricity needs in Ukraine. In autumn-winter period, this figure reaches 70%.

The key mission of Energoatom is the safe electricity production.

Company’s goal

Electricity generation, safe and efficient operation of nuclear power plants, uninterrupted power supply to economic entities and the population, as well as within its competence, actions to ensure Ukraine’s readiness for rapid and effective response in the event of accidents at nuclear power plants and radiation accidents in the industry.

Energoatom today

<table>
<thead>
<tr>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of employees, persons</td>
<td>35,186</td>
</tr>
<tr>
<td>Staff training expenses, million UAH</td>
<td>24.2</td>
</tr>
<tr>
<td>Payroll fund, million UAH</td>
<td>4,224.1</td>
</tr>
<tr>
<td>Allocations to a special state budget fund for social and economic payments,12 million UAH</td>
<td>314</td>
</tr>
<tr>
<td>H&S expenses, million UAH</td>
<td>232.1</td>
</tr>
<tr>
<td>Environmental expenses, million UAH</td>
<td>160.6</td>
</tr>
<tr>
<td>Investment in development (financing capital investments), million UAH</td>
<td>3,840.2</td>
</tr>
<tr>
<td>Taxes paid to the budgets of all levels and insurance settlements, billion UAH</td>
<td>7.268</td>
</tr>
</tbody>
</table>

including UAH 5,371 billion paid to the budgets of all levels, of which UAH 710.3 million in environmental taxes

including UAH 7,190 billion paid to the budgets of all levels, of which UAH 778.7 million in environmental taxes

Energoatom is a leader in the national energy market.

Energoatom is a reliable electricity provider for millions of Ukrainian citizens.

Energoatom covers approximately 55% of the electricity needs in Ukraine. In autumn-winter period, this figure reaches 70%.

Energoatom today

Energoatom is a leader in the national energy market.

Energoatom is a reliable electricity provider for millions of Ukrainian citizens.

Energoatom covers approximately 55% of the electricity needs in Ukraine. In autumn-winter period, this figure reaches 70%.

The key mission of Energoatom is the safe electricity production.

Company’s goal

Electricity generation, safe and efficient operation of nuclear power plants, uninterrupted power supply to economic entities and the population, as well as within its competence, actions to ensure Ukraine’s readiness for rapid and effective response in the event of accidents at nuclear power plants and radiation accidents in the industry.
COMPANY’S STRUCTURE

Energoatom runs four operating NPPs of Ukraine, with 15 power units in total, including 13 VVER-1000 power units and two VVER-440 power units with a total installed capacity of 13,835 MW, two hydroelectric units with the installed capacity of 302 MW at Tashlyk HPSPP, and two hydropower units with the installed capacity of 11.5 MW at Olexandrivska Hydro Power Plant.

The main purpose of Energoatom’s activity is to safely increase electricity generation and the installed capacity utilization factor of the nuclear power plant, subject to continued improvement of operational safety.

According to the Law of Ukraine On the Use of Nuclear Energy and Radiation Safety, Energoatom is entrusted with the functions of an operating organisation that is responsible for safe electricity generation.

Key objectives of Energoatom
• Safe electricity generation
• Improvement of safety at NPPs on the basis of introduction of modern technologies, improvement of security systems characteristics
• Construction of new and renewal of the current energy facilities
• Purchase of fresh and disposal of spent fuel
• Development of the national infrastructure for the management of spent nuclear fuel and radioactive waste
• Physical protection of nuclear power facilities
• Retraining and advanced training of staff

Total installed electric capacity of the power generation equipment of Energoatom

2,835 MW
Rivne NPP

6,000 MW
Zaporizhzhya NPP

2,000 MW
Khmelnytska NPP

14,148.5 MW
Total installed electric capacity of the power generation equipment of Energoatom

302 MW
Tashlyk HPSPP

3,000 MW
South-Ukraine NPP

11.5 MW
Olexandrivska HPP
GEOGRAPHY SPAN

RIVNE NPP

KHMELNYTSKA NPP

HEAD OFFICE OF NNEGC “ENERGOATOM”

SOUTH-URALINE NPP

ZAPORIZHZHYA NPP

Type of reactors

- VVER-440
- VVER-1000

Our employees and local communities

Environmental responsibility

Safety culture

Investment projects

Corporate governance and sustainability

Energoatom today

Address by Energoatom president

1996

1999
Olexandrivska HPP was put into operation (with the total capacity of two hydro units of 11.5 MW).

2000
• Executive agreement for US-Ukraine Fuel Qualification Programme was signed between the Government of Ukraine and the Government of the United States.
• Resolution of the Cabinet of Ministers of Ukraine No 1713 approved the proposal of the Ministry of Fuel and Energy to bring into operation two gas turbines at Tashlyk HPSPP with the installed capacity of 302 MW.
• A separate subdivision, AtomRemontService, was created.

2001
• Zaporizhzhya NPP was the first company in Ukraine that had obtained the license from the Ministry of Ecology and Natural Resources of Ukraine for training operational staff.
• The license of the State Nuclear Regulatory Inspectorate of Ukraine was granted to Zaporizhzhya NPP to launch dry spent fuel storage facility in test mode. The first container with spent nuclear fuel was installed at the dry storage facility of Zaporizhzhya NPP.

2002
• Information and Measuring System Koltso (Ring) of Zaporizhzhya NPP was put into commercial operation for the first time in the CIS. The system was designed to provide constant monitoring of the radiation in the observation zone around the nuclear power plant.
• Atomkomplekt, a Company’s separate subdivision, was set up.
• Order of Cabinet of Ministers of Ukraine No. 504 introduced Complex (Consolidated) Safety Upgrade Programme of Power Units of Ukrainian NPPs (CCSUP).

2003
Company’s separate subdivisions Scientific and Technical Center, Emergency and technical center and Atomenergomash were created.

2004
• Launch of commercial operation of the dry spent fuel storage facility at Zaporizhzhya NPP
• Power unit No. 2 at Khmelnytska NPP and power unit No. 4 at Rivne NPP were finally built and connected to the power grid system.
• Energoatom closed the tender for the design and construction of a central storage facility for spent nuclear fuel from VVER type reactors. American company Holtec International became the winner in the tender.

2005
• For the first time in Ukraine, six TVS-W fuel assemblies manufactured by Westinghouse (USA) were placed along with Russian fuel assemblies in the reactor core of power unit No. 3 at South-Ukraine NPP.
• The company signed the contract for the design and construction of the CSFSF with Holtec International.

2006
Hydro unit No. 1 of Tashlyk HPSPP was put into commercial operation.

2007
Hydro unit No. 2 of Tashlyk HPSPP was put into commercial operation. The Cabinet of Ministers of Ukraine approved the project and the deadline for Tashlyk HPSPP completion.

2008
• A Company’s separate subdivision Skladske Gospodarstvo was created.
• The Ministry of Fuel and Energy of Ukraine made the decision to put State Enterprise Donuzlavskaya VES under the umbrella of Energoatom.
• Atomprojectengineering, a Company’s separate subdivision, was set up.
• The Government of Ukraine and the European Commission signed the agreement for financing the annual Nuclear Safety Programme (Instrument Nuclear Safety Cooperation (INSC)), which had been in effect since 2007.

2009
• The Cabinet of Ministers of Ukraine adopted Resolution No. 118 On Priority Measures for the Construction of Power Unit No. 3 and No. 4 at Khmelnytska NPP.
• The Cabinet of Ministers of Ukraine approved the feasibility study for investment (TEDS) in the construction of the Central Spent Fuel Storage Facility (CSFSF).

2019
For the first time in Ukraine, the life cycle of operating power units No. 1 and No. 2 at Rivne NPP was extended for 20 years following their reconstruction and upgrade.

The project for reconstruction of a 750 kV overhead line with Kyivska substation to Khmelnytska NPP was completed. The station was connected via reconstruction of a 750 kV outdoor switchgear for connection of power unit No. 2 at South-Ukraine NPP for 10 years (until 31 December 2025) beyond the project time.

The first commercial consignment of TVS-W fuel assemblies made by Westinghouse was loaded in the reactor core of Unit No. 3 at South-Ukraine NPP.

Due to the events at Fukushima NPP in Japan, inspections of safety and physical protection of nuclear power plants (stress tests) took place at all nuclear power plants of Ukraine with engagement of international experts. Once again, they confirmed the reliability of the operation of nuclear power plants.

Order of the Cabinet of Ministers of Ukraine No. 1270 approved the Complex (Consolidated) Safety Upgrade Programme of Power Units of Ukrainian NPPs (CCSUP).

The first preparatory works for the construction of Central Spent Fuel Storage Facility (CSFSF), was completed and submitted for state examination. The first preparatory works on the site of Central Spent Fuel Storage Facility (CSFSF) was approved.

The integrated management system was certified according to ISO 9001:2008 and ISO 14001:2009 by TUVD NORD CERT (Germany, Essen).

The meeting of the Board of State Nuclear Regulatory Inspectorate of Ukraine made the decision to continue exploiting power unit No. 1 at South-Ukraine NPP for a period of ten years (until 2 December 2023).

Decree of the Collegium of State Nuclear Regulatory Inspectorate of Ukraine No. 10 approved the National Action Plan for Enhancing the Safety of NPP on the basis of the results of “stress tests”, operational inspections of safety and physical protection of NPPs in Ukraine that were carried out in connection with the events at Fukushima nuclear power plant in Japan.

Loan and guarantee agreements worth €300 million were signed between Energoatom and the European Bank for Reconstruction and Development, as well as to the amount of €330 million between Energoatom and the European Atomic Energy Community in order to implement the Complex (Consolidated) Safety Upgrade Programme of Power Units of Ukrainian NPPs (CCSUP).

The final results of the European Commission’s review of the National Report on the results of the “stress tests” conducted for the nuclear power plant of Ukraine were approved in Brussels.

The order of Ministry of Energy of Ukraine dd. 04 April 2014 No. 284 authorized Energoatom to perform the functions of the organisation for operating the Central Spent Fuel Storage Facility.

Energoatom established the Academy of Nuclear Industry Executives training centre and a representative office in Brussels (Kingdom of Belgium). Energoatom presented its vision to Atomproyekt construction bureau. Also, the company was joined by Automation and Engineering, a government-owned scientific and production complex (Zhovti Vody).

The company started works on the Zaporizhzhya NPP project, a reconstruction of a 750 kV outdoor switchgear for connection of 750 kV overhead line Zaporizhzhya-Kakhovka that was approved by Cabinet's Order No. 734-p.d. 13 August 2014.

Energoatom signed a memorandum with NGO Transparent Procurement to build a transparent and efficient public procurement system in Ukraine.

Conceptual decision No. HP.44.001-14 Construction of the 3rd and 4th Power Units of Khmelnitstka NPP that was developed by Energoatom and approved by the Ministry of Energy and Coal Industry, SNIRU and the Ministry of Regional Development was registered.
KEY PRODUCTION AND FINANCIAL PERFORMANCE INDICATORS

PRODUCTION PERFORMANCE INDICATORS

In 2016, Energoatom generated 81.2 billion kWh of electricity.

In 2016, Energoatom accounted for 52.4% of the total electricity production in Ukraine.

Energoatom share in total electricity production in Ukraine, 2012–2016, %

In 2016, its share in the total electricity sales in Ukraine made 53.9%.

Electricity supplies to Ukrainian wholesale market, by power generation segment, billion kWh, 2016

FINANCIAL PERFORMANCE INDICATORS

Key financial performance indicators of Energoatom, 2015-2016

<table>
<thead>
<tr>
<th>Indicator</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income, million UAH</td>
<td>40,221.9</td>
<td>39,229.6</td>
</tr>
<tr>
<td>Including</td>
<td></td>
<td></td>
</tr>
<tr>
<td>from products sold, million UAH</td>
<td>32,903.9</td>
<td>36,067.9</td>
</tr>
<tr>
<td>other operational income, million UAH</td>
<td>4,789.3</td>
<td>2,167.6</td>
</tr>
<tr>
<td>other financial expenses, million UAH</td>
<td>4.5</td>
<td>3.2</td>
</tr>
<tr>
<td>other incomes, million UAH</td>
<td>2,524.2</td>
<td>990.9</td>
</tr>
<tr>
<td>Expenses, million UAH</td>
<td>39,094.8</td>
<td>39,042.5</td>
</tr>
<tr>
<td>including</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cost of sold goods (items, works and services), million UAH</td>
<td>25,503.0</td>
<td>30,343.9</td>
</tr>
<tr>
<td>administrative expenses, million UAH</td>
<td>660.0</td>
<td>717.8</td>
</tr>
<tr>
<td>other operational expenses, million UAH</td>
<td>6,134.4</td>
<td>4,129.6</td>
</tr>
<tr>
<td>financial expenses, million UAH</td>
<td>1,292.5</td>
<td>1,738.3</td>
</tr>
<tr>
<td>other expenses, million UAH</td>
<td>5,223.5</td>
<td>2,062.1</td>
</tr>
<tr>
<td>income tax expenses, million UAH</td>
<td>281.5</td>
<td>50.9</td>
</tr>
<tr>
<td>Net profit, million UAH</td>
<td>833.8</td>
<td>187.1</td>
</tr>
<tr>
<td>Operational expenses, million UAH</td>
<td>29,934.6</td>
<td>34,230.6</td>
</tr>
<tr>
<td>Assets, million UAH</td>
<td>201,795.8</td>
<td>206,279.9</td>
</tr>
<tr>
<td>Capital investment, million UAH</td>
<td>3,007.5</td>
<td>5,298.6</td>
</tr>
</tbody>
</table>

For more details about financial reporting of the Company, please go to the Company’s website at www.atom.gov.ua
ENSURING ENERGY EFFICIENCY OF UKRAINE

Energy consumption in the world keeps growing. Experts expect that the world’s nuclear capacities will grow at least twofold by 2050. Nuclear energy is not only an important element of energy supply in any country of the world but also the most developed and high-tech sector of economy.

Nuclear power accounts for about 60% of the total electricity generation of Ukraine.

Independence of a state rests primarily on energy security and economic independence. Thus, enhancing energy independence of Ukraine is one of the key challenges for Ukraine today. Because of the military aggression of Russia in Donbas, coal production decreased twofold that caused deficit of coal at TPPs before the heating season. In this situation, Ukrainian nuclear energy sector remains the only sustainable source of electricity.

It is important for Ukraine to declare how it is going to pursue its energy independence in a national document, an Energy Strategy Paper. After joining the Energy Community and signing the EU-Ukraine Association Agreement, Ukraine has committed itself to developing the energy policy based on the principles and practices of the European law. By joining the Paris Climate Agreement, Ukraine committed itself to taking certain climate actions and including them in sector-specific policies and programmes.

In June 2017, the Ministry of Energy and Coal of Ukraine presented the revised Energy Strategy of Ukraine 2035, “Safety, Efficiency and Competitiveness” [5]. Its main goal is to transform the energy and fuel complex of Ukraine in modern, competitive and effective sector of economy. The document addresses the climate challenges and focuses on reduction of carbon intensity of the Ukrainian energy sector, in particular at the expense of stable production of nuclear energy, which is the largest source of low carbon energy in Ukraine.

The document highlights the challenges faced by the nuclear energy sector of Ukraine as well as gives proposals on the actions needed to ensure sustainable development of the nuclear area. In particular, the document demands the extension of the lifecycle of power plants and replacement the facilities that will be decommissioned. In addition, it provides for a better use of installed capacity of nuclear power plants (CUF) and construction of the Central Storage Facility for spent nuclear fuel and high-level waste from its processing.

Priority areas of nuclear energy sector development specified in Energy Strategy of Ukraine 2035:

- Raise the capacity utilisation of nuclear power plants (CUP).
- Extend the life of NPP power units and replace NPP power plants that will be decommissioned after 2030.
- Select reactor technologies for the construction of new nuclear power units to replace power plants subject to decommissioning.
- Develop and approve long-term Nuclear Energy Development Programme of Ukraine.
- Establish an effective mechanism for the accumulation of resources by the nuclear operator to finance the decommissioning of nuclear power units.

The Energy Strategy 2035 is divided into three stages, each of which defines the priority tasks. During the first stage (up to 2020) it is planned to commission nuclear facilities of the total capacity 1 GW. The document emphasizes the fact that by 2035 Ukraine will have decommissioned the facilities that currently account for 80% of the nuclear energy generation. Therefore, the decision to replace these facilities must be adopted as soon as possible, given the time needed for the design and construction of new capacities.

The projections for further development of the nuclear energy sector for the period up to 2035 are based on the assumption that the share of nuclear generation in the total volume of electricity production will keep growing.

Projected electricity generation by 2035, billion kWh

<table>
<thead>
<tr>
<th>Elements of electricity generation (basic scenario)</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity generation in total, including</td>
<td>157</td>
<td>164</td>
<td>178</td>
<td>185</td>
<td>195</td>
</tr>
<tr>
<td>NPPs</td>
<td>88</td>
<td>85</td>
<td>91</td>
<td>93</td>
<td>94</td>
</tr>
<tr>
<td>TPP/CHPP</td>
<td>61</td>
<td>60</td>
<td>64</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Hydro</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Renewables</td>
<td>2</td>
<td>9</td>
<td>12</td>
<td>18</td>
<td>25</td>
</tr>
</tbody>
</table>
One of the strategic tasks facing Energoatom as the largest electricity producer in Ukraine is to reduce the country’s dependence on the nuclear fuel supplies from Russia. Therefore, the Company keeps taking strategic, consistent steps to strengthen the energy independence of Ukraine and meet the needs of the Ukrainian nuclear power plants.

In particular, Energoatom is implementing a joint successful project “Qualification of Nuclear Fuel for Ukraine” with US-Japan Westinghouse. As a result, Energoatom managed to start real diversification of nuclear fuel supplies for Ukrainian nuclear power plants. The fuel for the Ukrainian NPP is produced by Westinghouse at its production facilities in Vasteros, Sweden. In 2016, Ukraine used Westinghouse fuel at two NPP units with 15 employees. In 2016, Ukraine imported a total of about 40% of the nuclear fuel elements for the operation of nuclear reactors (fuel elements) from Sweden and 60% from Russia.

One more step in this direction is cooperation with Holtec International, which continues to implement a project for the construction of Central Spent Fuel Storage Facility (CSFSF) with Energoatom. The CSFSF is designed to strengthen energy independence of Ukraine through refusal from export of spent fuel to the Russian Federation. Now our country exports more than half of its SF to Russia for technological storage and subsequent processing, paying for it about $200 million a year. According to preliminary estimates, the cost of construction and operation of CSFSF is four times less than the total costs that are paid today for the export of SF to Russia. It is expected that Energoatom’s investments in the CSFSF will be paid back in four years of operation.

Nuclear generation is to develop in the new market conditions. Strategic goal of Ukraine is to ensure the implementation of the Association Agreement with the European Union and the integration of Ukraine’s United Energy System into the European Network of Transmission System Operators (ENTSO-E). The agenda includes issues related to the reform of the electricity market, modernization of the electricity infrastructure, the implementation of the EU Third Energy Package and completion of power units No.3 and No.4 at Khmelnytska NPP.

Ukraine-EU Energy Bridge is one more strategic project that meets all these goals. It was created for the strategic synchronization of the Ukrainian energy system with the EU system. The project is an integral part of the Baltic Energy Market Integration Plan (BEMIP), which was initiated by the European Council in 2008. Read more about the project in the Investment Projects section.
THE COMPANY’S STRATEGIC DEVELOPMENT PLAN

Since the 1980’s, a number of programmes have been implemented at existing NPPs in Ukraine to improve their level of operational safety. According to the State Nuclear Regulatory Inspectorate and international experts, the current level of safety at Ukrainian NPPs corresponds to the world’s level of safety of nuclear power plants of the same generation. Today the activities in this area are carried out within the framework of the Complex (Consolidated) Safety Upgrade Programme of Power Units of Ukrainian NPPs (CCSUP) approved by Decree of the Cabinet of Ministers of Ukraine dated 7 December 2011 No. 1270. Also, there is some additional activity going on as recommended under the National Report of Ukraine following the results of the target review of the safety of nuclear facilities located at the sites of the nuclear power plant ("stress tests"). The aforementioned measures for the Ukrainian NPPs take into account the lessons learned from the accident at Fukushima Daiichi NPP in Japan in March 2011.

However, the potential for further improvement of the level of safety at the national nuclear power plants is far from being exhausted. Understanding its role in enhancement of the safety of Ukrainian NPPs, in early 2017 the Company approved the Strategic Plan for Energoatom Development 2017-2021 (the Company’s Strategic Development Plan).

The Company’s Strategic Development Plan was compiled on the basis of strategic goals and priorities of development of Ukraine and the energy sector that are specified in a number of documents:

- The Complex (Consolidated) Safety Upgrade Programme of Power Units of Ukrainian NPPs (CCSUP) approved by Decree of the Cabinet of Ministers of Ukraine dd. 7 December 2011, No. 1270.
- Sectoral Agreement between the Ministry of Energy and Coal of Ukraine and the Trade Union of Nuclear Power and Industry Workers of Ukraine.

Energoatom’s strategic goals have been developed in line with strategic areas of the Company.

For more about the implementation of the Company’s Strategic Development Plan, see our next reports and visit our website at www.atom.gov.ua